Lagrangian torus fibration and mirror symmetry of Calabi-Yau hypersurface in toric variety

نویسنده

  • Wei-Dong Ruan
چکیده

2 Background in toric geometry 8 2.1 Basic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2 Toric varieties associated with a reflexive polyhedron . . . . . . . 10 2.3 Subtoric varieties . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.4 Singularities of a simplicial toric variety . . . . . . . . . . . . . . 12 2.5 Toric action of a torus on a toric variety . . . . . . . . . . . . . . 13 2.6 Blow up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized special Lagrangian torus fibration for Calabi-Yau hypersurfaces in toric varieties I

In this paper we start the program of constructing generalized special Lagrangian torus fibrations for Calabi-Yau hypersurfaces in toric variety near the large complex limit, with respect to the restriction of a toric metric on the toric variety to the Calabi-Yau hypersurface. The construction is based on the deformation of the standard toric generalized special Lagrangian torus fibration of th...

متن کامل

Torus Fibrations of Calabi-Yau Hypersurfaces in Toric Varieties and Mirror Symmetry

We consider regular Calabi-Yau hypersurfaces in N -dimensional smooth toric varieties. On such a hypersurface in the neighborhood of the large complex structure limit point we construct a fibration over a sphere S whose generic fibers are tori T. Also for certain one-parameter families of such hypersurfaces we show that the monodromy transformation is induced by a translation of the T fibration...

متن کامل

Torus Fibrations of Calabi-yau Hypersurfaces in Toric Varieties

1. Introduction. Strominger, Yau, and Zaslow [SYZ] conjectured that any Calabi-Yau manifold X having a mirror partner X ∨ should admit a special Lagrangian fi-bration π : X → B. (A mathematical account of their construction can be found in [M].) If so, the mirror manifold X ∨ is obtained by finding some suitable compactifi-cation of the moduli space of flat U(1)-bundles along the nonsingular fi...

متن کامل

S ep 1 99 9 Topological Mirror Symmetry

The Strominger-Yau-Zaslow conjecture proposes that mirror symmetry can be explained by the existence, in a mirror pair of Calabi-Yau manifolds, of dual special La-grangian T n-fibrations. (See [18,8,6,7] for further clarification of this conjecture.) Recently, Zharkov in [20] proved that non-singular Calabi-Yau hypersurfaces in toric varieties have topological T n-fibrations, and Ruan in [17] h...

متن کامل

Integral Affine Structures on Spheres Duke-cgtp-02-05 and Torus Fibrations of Calabi-yau Toric Hypersurfaces I

We describe in purely combinatorial terms dual pairs of integral affine structures on spheres which come from the conjectural metric collapse of mirror families of Calabi-Yau toric hypersurfaces. The same structures arise on the base of a special Lagrangian torus fibration in the Strominger-Yau-Zaslow conjecture. We study the topological torus fibration in the large complex structure limit and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008